1374 lines
41 KiB
Lua
Raw Normal View History

2021-03-17 17:45:57 +01:00
--[[
LPEGLJ
lpeglj.lua
Main module and tree generation
Copyright (C) 2014 Rostislav Sacek.
based on LPeg v1.0 - PEG pattern matching for Lua
Lua.org & PUC-Rio written by Roberto Ierusalimschy
http://www.inf.puc-rio.br/~roberto/lpeg/
** Permission is hereby granted, free of charge, to any person obtaining
** a copy of this software and associated documentation files (the
** "Software"), to deal in the Software without restriction, including
** without limitation the rights to use, copy, modify, merge, publish,
** distribute, sublicense, and/or sell copies of the Software, and to
** permit persons to whom the Software is furnished to do so, subject to
** the following conditions:
**
** The above copyright notice and this permission notice shall be
** included in all copies or substantial portions of the Software.
**
** THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
** EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
** MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
** IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
** CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
** TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
** SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
**
** [ MIT license: http://www.opensource.org/licenses/mit-license.php ]
--]]
assert(jit.version_num > 20000, "Use LuaJIT v2.0.1 or higher.")
local ffi = require "ffi"
local lpcode = require "lpcode"
local lpprint = require "lpprint"
local lpvm = require "lpvm"
local band, bor, bnot, rshift, lshift = bit.band, bit.bor, bit.bnot, bit.rshift, bit.lshift
ffi.cdef [[
int isalnum(int c);
int isalpha(int c);
int iscntrl(int c);
int isdigit(int c);
int isgraph(int c);
int islower(int c);
int isprint(int c);
int ispunct(int c);
int isspace(int c);
int isupper(int c);
int isxdigit(int c);
]]
local MAXBEHIND = 255
local MAXRULES = 200
local VERSION = "1.0.0.0LJ"
local TChar = 0
local TSet = 1
local TAny = 2 -- standard PEG elements
local TTrue = 3
local TFalse = 4
local TRep = 5
local TSeq = 6
local TChoice = 7
local TNot = 8
local TAnd = 9
local TCall = 10
local TOpenCall = 11
local TRule = 12 -- sib1 is rule's pattern, sib2 is 'next' rule
local TGrammar = 13 -- sib1 is initial (and first) rule
local TBehind = 14 -- match behind
local TCapture = 15 -- regular capture
local TRunTime = 16 -- run-time capture
local IAny = 0 -- if no char, fail
local IChar = 1 -- if char != val, fail
local ISet = 2 -- if char not in val, fail
local ITestAny = 3 -- in no char, jump to 'offset'
local ITestChar = 4 -- if char != val, jump to 'offset'
local ITestSet = 5 -- if char not in val, jump to 'offset'
local ISpan = 6 -- read a span of chars in val
local IBehind = 7 -- walk back 'val' characters (fail if not possible)
local IRet = 8 -- return from a rule
local IEnd = 9 -- end of pattern
local IChoice = 10 -- stack a choice; next fail will jump to 'offset'
local IJmp = 11 -- jump to 'offset'
local ICall = 12 -- call rule at 'offset'
local IOpenCall = 13 -- call rule number 'offset' (must be closed to a ICall)
local ICommit = 14 -- pop choice and jump to 'offset'
local IPartialCommit = 15 -- update top choice to current position and jump
local IBackCommit = 16 -- "fails" but jump to its own 'offset'
local IFailTwice = 17 -- pop one choice and then fail
local IFail = 18 -- go back to saved state on choice and jump to saved offset
local IGiveup = 19 -- internal use
local IFullCapture = 20 -- complete capture of last 'off' chars
local IOpenCapture = 21 -- start a capture
local ICloseCapture = 22
local ICloseRunTime = 23
local Cclose = 0
local Cposition = 1
local Cconst = 2
local Cbackref = 3
local Carg = 4
local Csimple = 5
local Ctable = 6
local Cfunction = 7
local Cquery = 8
local Cstring = 9
local Cnum = 10
local Csubst = 11
local Cfold = 12
local Cruntime = 13
local Cgroup = 14
local PEnullable = 0
local PEnofail = 1
local PEleftrecursion = 2
local newgrammar
local RuleLR = 0x10000
local Ruleused = 0x20000
local BCapcandelete = 0x30000
local LREnable = false
-- number of siblings for each tree
local numsiblings = {
0, 0, 0, -- char, set, any
0, 0, -- true, false
1, -- rep
2, 2, -- seq, choice
1, 1, -- not, and
0, 0, 2, 1, -- call, opencall, rule, grammar
1, -- behind
1, 1 -- capture, runtime capture
}
local patternid = 0
local valuetable = {}
local funcnames = setmetatable({}, { __mode = 'k' })
local treepatternelement = ffi.typeof('TREEPATTERN_ELEMENT')
local treepattern = ffi.typeof('TREEPATTERN')
local patternelement = ffi.typeof('PATTERN_ELEMENT')
local pattern = ffi.typeof('PATTERN')
local settype = ffi.typeof('int32_t[8]')
local uint32 = ffi.typeof('uint32_t[1]')
-- Fix a TOpenCall into a TCall node, using table 'postable' to
-- translate a key to its rule address in the tree. Raises an
-- error if key does not exist.
local function fixonecall(postable, grammar, index, valuetable)
local name = valuetable[grammar.p[index].val] -- get rule's name
local n = postable[name] -- query name in position table
-- no position?
if not n then
error(("rule '%s' undefined in given grammar"):format(type(name) == 'table' and '(a table)' or name), 0)
end
grammar.p[index].tag = TCall;
grammar.p[index].ps = n - index -- position relative to node
grammar.p[index + grammar.p[index].ps].cap = bit.bor(grammar.p[index + grammar.p[index].ps].cap, Ruleused)
end
-- Transform left associative constructions into right
-- associative ones, for sequence and choice; that is:
-- (t11 + t12) + t2 => t11 + (t12 + t2)
-- (t11 * t12) * t2 => t11 * (t12 * t2)
-- (that is, Op (Op t11 t12) t2 => Op t11 (Op t12 t2))
local function correctassociativity(tree, index)
local t1 = index + 1
assert(tree.p[index].tag == TChoice or tree.p[index].tag == TSeq)
while tree.p[t1].tag == tree.p[index].tag do
local n1size = tree.p[index].ps - 1; -- t1 == Op t11 t12
local n11size = tree.p[t1].ps - 1;
local n12size = n1size - n11size - 1
for i = 1, n11size do
ffi.copy(tree.p + index + i, tree.p + t1 + i, ffi.sizeof(treepatternelement))
end
tree.p[index].ps = n11size + 1
tree.p[index + tree.p[index].ps].tag = tree.p[index].tag
tree.p[index + tree.p[index].ps].ps = n12size + 1
end
end
-- Make final adjustments in a tree. Fix open calls in tree,
-- making them refer to their respective rules or raising appropriate
-- errors (if not inside a grammar). Correct associativity of associative
-- constructions (making them right associative).
local function finalfix(fix, postable, grammar, index, valuetable)
local tag = grammar.p[index].tag
--subgrammars were already fixed
if tag == TGrammar then
return
elseif tag == TOpenCall then
-- inside a grammar?
if fix then
fixonecall(postable, grammar, index, valuetable)
-- open call outside grammar
else
error(("rule '%s' used outside a grammar"):format(tostring(valuetable[grammar.p[index].val])), 0)
end
elseif tag == TSeq or tag == TChoice then
correctassociativity(grammar, index)
end
local ns = numsiblings[tag + 1]
if ns == 0 then
elseif ns == 1 then
return finalfix(fix, postable, grammar, index + 1, valuetable)
elseif ns == 2 then
finalfix(fix, postable, grammar, index + 1, valuetable)
return finalfix(fix, postable, grammar, index + grammar.p[index].ps, valuetable)
else
assert(false)
end
end
-- {======================================================
-- Tree generation
-- =======================================================
local function newcharset()
local tree = treepattern(1)
valuetable[tree.id] = { settype() }
tree.p[0].tag = TSet
tree.p[0].val = 1
return tree, valuetable[tree.id][1]
end
-- add to tree a sequence where first sibling is 'sib' (with size
-- 'sibsize')
local function seqaux(tree, sib, start, sibsize)
tree.p[start].tag = TSeq;
tree.p[start].ps = sibsize + 1
ffi.copy(tree.p + start + 1, sib.p, ffi.sizeof(treepatternelement) * sibsize)
end
-- Build a sequence of 'n' nodes, each with tag 'tag' and 'val' got
-- from the array 's' (or 0 if array is NULL). (TSeq is binary, so it
-- must build a sequence of sequence of sequence...)
local function fillseq(tree, tag, start, n, s)
-- initial n-1 copies of Seq tag; Seq ...
for i = 1, n - 1 do
tree.p[start].tag = TSeq
tree.p[start].ps = 2
tree.p[start + 1].tag = tag
if s then
tree.p[start + 1].val = s:sub(i, i):byte()
end
start = start + tree.p[start].ps
end
tree.p[start].tag = tag -- last one does not need TSeq
if s then
tree.p[start].val = s:sub(n, n):byte()
end
end
-- Numbers as patterns:
-- 0 == true (always match); n == TAny repeated 'n' times;
-- -n == not (TAny repeated 'n' times)
local function numtree(n)
if n == 0 then
local tree = treepattern(1)
tree.p[0].tag = TTrue
return tree
else
local tree, start
if n > 0 then
tree = treepattern(2 * n - 1)
start = 0
-- negative: code it as !(-n)
else
n = -n;
tree = treepattern(2 * n)
tree.p[0].tag = TNot
start = 1
end
fillseq(tree, TAny, start, n) -- sequence of 'n' any's
return tree;
end
end
-- Convert value to a pattern
local function getpatt(val, name)
local typ = type(val)
if typ == 'string' then
-- empty?
if #val == 0 then
local pat = treepattern(1)
pat.p[0].tag = TTrue -- always match
return pat
else
local tree = treepattern(2 * (#val - 1) + 1)
fillseq(tree, TChar, 0, #val, val) -- sequence of '#val' chars
return tree
end
elseif typ == 'number' then
return numtree(val)
elseif typ == 'boolean' then
local pat = treepattern(1)
pat.p[0].tag = val and TTrue or TFalse
return pat
elseif typ == 'table' then
return newgrammar(val)
elseif typ == 'function' then
if name and type(name) == 'string' then
funcnames[val] = name
end
local pat = treepattern(2)
valuetable[pat.id] = { val }
pat.p[0].tag = TRunTime
pat.p[0].val = 1
pat.p[1].tag = TTrue
return pat
elseif ffi.istype(treepattern, val) then
assert(val.treesize > 0)
return val
end
assert(false)
end
local function copykeys(ktable1, ktable2)
local ktable, offset = {}, 0
if not ktable1 and not ktable2 then
return ktable, 0
elseif ktable1 then
for i = 1, #ktable1 do
ktable[#ktable + 1] = ktable1[i]
end
offset = #ktable1
if not ktable2 then
return ktable, 0
end
end
if ktable2 then
for i = 1, #ktable2 do
ktable[#ktable + 1] = ktable2[i]
end
end
assert(#ktable < 65536, "too many Lua values in pattern")
return ktable, offset
end
local function correctkeys(tree, index, offset)
local tag = tree.p[index].tag
if (tag == TSet or tag == TRule or tag == TCall or tag == TRunTime or tag == TOpenCall or tag == TCapture) and
tree.p[index].val ~= 0 then
tree.p[index].val = tree.p[index].val + offset
end
local ns = numsiblings[tag + 1]
if ns == 0 then
elseif ns == 1 then
return correctkeys(tree, index + 1, offset)
elseif ns == 2 then
correctkeys(tree, index + 1, offset)
return correctkeys(tree, index + tree.p[index].ps, offset)
else
assert(false)
end
end
-- create a new tree, with a new root and one sibling.
local function newroot1sib(tag, pat)
local tree1 = getpatt(pat)
local tree = treepattern(1 + tree1.treesize) -- create new tree
valuetable[tree.id] = copykeys(valuetable[tree1.id])
tree.p[0].tag = tag
ffi.copy(tree.p + 1, tree1.p, ffi.sizeof(treepatternelement) * tree1.treesize)
return tree
end
-- create a new tree, with a new root and 2 siblings.
local function newroot2sib(tag, pat1, pat2)
local tree1 = getpatt(pat1)
local tree2 = getpatt(pat2)
local tree = treepattern(1 + tree1.treesize + tree2.treesize) -- create new tree
local ktable, offset = copykeys(valuetable[tree1.id], valuetable[tree2.id])
valuetable[tree.id] = ktable
tree.p[0].tag = tag
tree.p[0].ps = 1 + tree1.treesize
ffi.copy(tree.p + 1, tree1.p, ffi.sizeof(treepatternelement) * tree1.treesize)
ffi.copy(tree.p + 1 + tree1.treesize, tree2.p, ffi.sizeof(treepatternelement) * tree2.treesize)
if offset > 0 then
correctkeys(tree, 1 + tree1.treesize, offset)
end
return tree;
end
local function lp_P(val, name)
assert(type(val) ~= 'nil')
return getpatt(val, name)
end
-- sequence operator; optimizations:
-- false x => false, x true => x, true x => x
-- (cannot do x . false => false because x may have runtime captures)
local function lp_seq(pat1, pat2)
local tree1 = getpatt(pat1)
local tree2 = getpatt(pat2)
-- false . x == false, x . true = x
if tree1.p[0].tag == TFalse or tree2.p[0].tag == TTrue then
return tree1
-- true . x = x
elseif tree1.p[0].tag == TTrue then
return tree2
else
return newroot2sib(TSeq, tree1, tree2)
end
end
-- choice operator; optimizations:
-- charset / charset => charset
-- true / x => true, x / false => x, false / x => x
-- (x / true is not equivalent to true)
local function lp_choice(pat1, pat2)
local tree1 = getpatt(pat1)
local tree2 = getpatt(pat2)
local charset1 = lpcode.tocharset(tree1, 0, valuetable[tree1.id])
local charset2 = lpcode.tocharset(tree2, 0, valuetable[tree2.id])
if charset1 and charset2 then
local t, set = newcharset()
for i = 0, 7 do
set[i] = bor(charset1[i], charset2[i])
end
return t
elseif lpcode.checkaux(tree1, PEnofail, 0) or tree2.p[0].tag == TFalse then
return tree1 -- true / x => true, x / false => x
elseif tree1.p[0].tag == TFalse then
return tree2 -- false / x => x
else
return newroot2sib(TChoice, tree1, tree2)
end
end
-- p^n
local function lp_star(tree1, n)
local tree
n = tonumber(n)
assert(type(n) == 'number')
-- seq tree1 (seq tree1 ... (seq tree1 (rep tree1)))
if n >= 0 then
tree = treepattern((n + 1) * (tree1.treesize + 1))
if lpcode.checkaux(tree1, PEnullable, 0) then
error("loop body may accept empty string", 0)
end
valuetable[tree.id] = copykeys(valuetable[tree1.id])
local start = 0
-- repeat 'n' times
for i = 1, n do
seqaux(tree, tree1, start, tree1.treesize)
start = start + tree.p[start].ps
end
tree.p[start].tag = TRep
ffi.copy(tree.p + start + 1, tree1.p, ffi.sizeof(treepatternelement) * tree1.treesize)
-- choice (seq tree1 ... choice tree1 true ...) true
else
n = -n;
-- size = (choice + seq + tree1 + true) * n, but the last has no seq
tree = treepattern(n * (tree1.treesize + 3) - 1)
valuetable[tree.id] = copykeys(valuetable[tree1.id])
local start = 0
-- repeat (n - 1) times
for i = n, 2, -1 do
tree.p[start].tag = TChoice;
tree.p[start].ps = i * (tree1.treesize + 3) - 2
tree.p[start + tree.p[start].ps].tag = TTrue;
start = start + 1
seqaux(tree, tree1, start, tree1.treesize)
start = start + tree.p[start].ps
end
tree.p[start].tag = TChoice;
tree.p[start].ps = tree1.treesize + 1
tree.p[start + tree.p[start].ps].tag = TTrue
ffi.copy(tree.p + start + 1, tree1.p, ffi.sizeof(treepatternelement) * tree1.treesize)
end
return tree
end
-- #p == &p
local function lp_and(pat)
return newroot1sib(TAnd, pat)
end
-- -p == !p
local function lp_not(pat)
return newroot1sib(TNot, pat)
end
-- [t1 - t2] == Seq (Not t2) t1
-- If t1 and t2 are charsets, make their difference.
local function lp_sub(pat1, pat2)
local tree1 = getpatt(pat1)
local tree2 = getpatt(pat2)
local charset1 = lpcode.tocharset(tree1, 0, valuetable[tree1.id])
local charset2 = lpcode.tocharset(tree2, 0, valuetable[tree2.id])
if charset1 and charset2 then
local tree, set = newcharset()
for i = 0, 7 do
set[i] = band(charset1[i], bnot(charset2[i]))
end
return tree
else
local tree = treepattern(2 + tree1.treesize + tree2.treesize)
local ktable, offset = copykeys(valuetable[tree2.id], valuetable[tree1.id])
valuetable[tree.id] = ktable
tree.p[0].tag = TSeq; -- sequence of...
tree.p[0].ps = 2 + tree2.treesize
tree.p[1].tag = TNot; -- ...not...
ffi.copy(tree.p + 2, tree2.p, ffi.sizeof(treepatternelement) * tree2.treesize)
ffi.copy(tree.p + tree2.treesize + 2, tree1.p, ffi.sizeof(treepatternelement) * tree1.treesize)
if offset > 0 then
correctkeys(tree, 2 + tree2.treesize, offset)
end
return tree
end
end
local function lp_set(val)
assert(type(val) == 'string')
local tree, set = newcharset()
for i = 1, #val do
local b = val:sub(i, i):byte()
set[rshift(b, 5)] = bor(set[rshift(b, 5)], lshift(1, band(b, 31)))
end
return tree
end
local function lp_range(...)
local args = { ... }
local top = #args
local tree, set = newcharset()
for i = 1, top do
assert(#args[i] == 2, args[i] .. " range must have two characters")
for b = args[i]:sub(1, 1):byte(), args[i]:sub(2, 2):byte() do
set[rshift(b, 5)] = bor(set[rshift(b, 5)], lshift(1, band(b, 31)))
end
end
return tree
end
-- Look-behind predicate
local function lp_behind(pat)
local tree1 = getpatt(pat)
local n = lpcode.fixedlenx(tree1, 0, 0, 0)
assert(not lpcode.hascaptures(tree1, 0), "pattern have captures")
assert(n >= 0, "pattern may not have fixed length")
assert(n <= MAXBEHIND, "pattern too long to look behind")
local tree = newroot1sib(TBehind, pat)
tree.p[0].val = n;
return tree
end
-- Create a non-terminal
local function lp_V(val, p)
assert(val, "non-nil value expected")
local tree = treepattern(1)
valuetable[tree.id] = { val }
tree.p[0].tag = TOpenCall
tree.p[0].val = 1
tree.p[0].cap = p or 0
return tree
end
-- Create a tree for a non-empty capture, with a body and
-- optionally with an associated value
local function capture_aux(cap, pat, val)
local tree = newroot1sib(TCapture, pat)
tree.p[0].cap = cap
if val then
local ind = #valuetable[tree.id] + 1
assert(ind <= 65536, "too many Lua values in pattern" .. ind)
valuetable[tree.id][ind] = val
tree.p[0].val = ind
end
return tree
end
-- Fill a tree with an empty capture, using an empty (TTrue) sibling.
local function auxemptycap(tree, cap, par, start)
tree.p[start].tag = TCapture;
tree.p[start].cap = cap
if type(par) ~= 'nil' then
local ind = #valuetable[tree.id] + 1
assert(ind <= 65536, "too many Lua values in pattern")
valuetable[tree.id][ind] = par
tree.p[start].val = ind
end
tree.p[start + 1].tag = TTrue;
end
-- Create a tree for an empty capture
local function newemptycap(cap, par)
local tree = treepattern(2)
if type(par) ~= 'nil' then valuetable[tree.id] = {} end
auxemptycap(tree, cap, par, 0)
return tree
end
-- Captures with syntax p / v
-- (function capture, query capture, string capture, or number capture)
local function lp_divcapture(pat, par, xxx)
local typ = type(par)
if typ == "function" then
return capture_aux(Cfunction, pat, par)
elseif typ == "table" then
return capture_aux(Cquery, pat, par)
elseif typ == "string" then
return capture_aux(Cstring, pat, par)
elseif typ == "number" then
local tree = newroot1sib(TCapture, pat)
assert(0 <= par and par <= 0xffff, "invalid number")
tree.p[0].cap = Cnum;
local ind = #valuetable[tree.id] + 1
assert(ind <= 65536, "too many Lua values in pattern")
valuetable[tree.id][ind] = par
tree.p[0].val = ind
return tree
else
error("invalid replacement value", 0)
end
end
local function lp_substcapture(pat)
return capture_aux(Csubst, pat)
end
local function lp_tablecapture(pat)
return capture_aux(Ctable, pat, 0)
end
local function lp_groupcapture(pat, val)
if not val then
return capture_aux(Cgroup, pat)
else
return capture_aux(Cgroup, pat, val)
end
end
local function lp_foldcapture(pat, fce)
assert(type(fce) == 'function')
return capture_aux(Cfold, pat, fce)
end
local function lp_simplecapture(pat)
return capture_aux(Csimple, pat)
end
local function lp_poscapture()
return newemptycap(Cposition)
end
local function lp_argcapture(val)
assert(type(val) == 'number')
local tree = newemptycap(Carg, 0)
local ind = #valuetable[tree.id] + 1
assert(ind <= 65536, "too many Lua values in pattern")
valuetable[tree.id][ind] = val
tree.p[0].val = ind
assert(0 < val and val <= 0xffff, "invalid argument index")
return tree
end
local function lp_backref(val)
return newemptycap(Cbackref, val)
end
-- Constant capture
local function lp_constcapture(...)
local tree
local args = { ... }
local n = select('#', ...) -- number of values
-- no values?
if n == 0 then
tree = treepattern(1) -- no capture
tree.p[0].tag = TTrue
elseif n == 1 then
tree = newemptycap(Cconst, args[1]) -- single constant capture
-- create a group capture with all values
else
tree = treepattern(3 + 3 * (n - 1))
valuetable[tree.id] = {}
tree.p[0].tag = TCapture
tree.p[0].cap = Cgroup
local start = 1
for i = 1, n - 1 do
tree.p[start].tag = TSeq
tree.p[start].ps = 3
auxemptycap(tree, Cconst, args[i], start + 1)
start = start + tree.p[start].ps
end
auxemptycap(tree, Cconst, args[n], start)
end
return tree
end
local function lp_matchtime(pat, fce, name)
assert(type(fce) == 'function')
if name and type(name) == 'string' then
funcnames[fce] = name
end
local tree = newroot1sib(TRunTime, pat)
local ind = #valuetable[tree.id] + 1
assert(ind <= 65536, "too many Lua values in pattern")
valuetable[tree.id][ind] = fce
tree.p[0].val = ind
return tree
end
-- ======================================================
-- ======================================================
-- Grammar - Tree generation
-- =======================================================
-- return index and the pattern for the
-- initial rule of grammar;
-- also add that index into position table.
local function getfirstrule(pat, postab)
local key
-- access first element
if type(pat[1]) == 'string' then
key = pat[1]
else
key = 1
end
local rule = pat[key]
if not rule then
error("grammar has no initial rule", 0)
end
-- initial rule not a pattern?
if not ffi.istype(treepattern, rule) then
error(("initial rule '%s' is not a pattern"):format(tostring(key)), 0)
end
postab[key] = 1
return key, rule
end
-- traverse grammar, collect all its keys and patterns
-- into rule table. Create a new table (before all pairs key-pattern) to
-- collect all keys and their associated positions in the final tree
-- (the "position table").
-- Return the number of rules and the total size
-- for the new tree.
local function collectrules(pat)
local n = 1; -- to count number of rules
local postab = {}
local firstkeyrule, firstrule = getfirstrule(pat, postab)
local rules = { firstkeyrule, firstrule }
local size = 2 + firstrule.treesize -- TGrammar + TRule + rule
for key, val in pairs(pat) do
-- initial rule?
if key ~= 1 and tostring(val) ~= tostring(firstrule) then
-- value is not a pattern?
if not ffi.istype(treepattern, val) then
error(("rule '%s' is not a pattern"):format(tostring(key)), 0)
end
rules[#rules + 1] = key
rules[#rules + 1] = val
postab[key] = size
size = 1 + size + val.treesize
n = n + 1
end
end
size = size + 1; -- TTrue to finish list of rules
return n, size, rules, postab
end
local function buildgrammar(grammar, rules, n, index, valuetable)
local ktable, offset = {}, 0
-- add each rule into new tree
for i = 1, n do
local size = rules[i * 2].treesize
grammar.p[index].tag = TRule;
grammar.p[index].cap = i; -- rule number
grammar.p[index].ps = size + 1; -- point to next rule
local ind = #ktable + 1
ktable[ind] = rules[i * 2 - 1]
grammar.p[index].val = ind
ffi.copy(grammar.p + index + 1, rules[i * 2].p, ffi.sizeof(treepatternelement) * size) -- copy rule
ktable, offset = copykeys(ktable, valuetable[rules[i * 2].id])
if offset > 0 then
correctkeys(grammar, index + 1, offset)
end
index = index + grammar.p[index].ps; -- move to next rule
end
grammar.p[index].tag = TTrue; -- finish list of rules
return ktable
end
-- Check whether a tree has potential infinite loops
local function checkloops(tree, index)
local tag = tree.p[index].tag
if tag == TRep and lpcode.checkaux(tree, PEnullable, index + 1) then
return true
elseif tag == TGrammar then
return -- sub-grammars already checked
else
local tag = numsiblings[tree.p[index].tag + 1]
if tag == 0 then
return
elseif tag == 1 then
return checkloops(tree, index + 1)
elseif tag == 2 then
if checkloops(tree, index + 1) then
return true
else
return checkloops(tree, index + tree.p[index].ps)
end
else
assert(false)
end
end
end
-- Check whether a rule can be left recursive; returns PEleftrecursion in that
-- case; otherwise return 1 iff pattern is nullable.
local function verifyrule(rulename, tree, passed, nullable, index, valuetable)
local tag = tree.p[index].tag
if tag == TChar or tag == TSet or tag == TAny or tag == TFalse then
return nullable; -- cannot pass from here
elseif tag == TTrue or tag == TBehind then
return true;
elseif tag == TNot or tag == TAnd or tag == TRep then
return verifyrule(rulename, tree, passed, true, index + 1, valuetable)
elseif tag == TCapture or tag == TRunTime then
return verifyrule(rulename, tree, passed, nullable, index + 1, valuetable)
elseif tag == TCall then
local rule = valuetable[tree.p[index].val]
if rule == rulename then return PEleftrecursion end
if passed[rule] and passed[rule] > MAXRULES then
return nullable
end
return verifyrule(rulename, tree, passed, nullable, index + tree.p[index].ps, valuetable)
-- only check 2nd child if first is nullable
elseif tag == TSeq then
local res = verifyrule(rulename, tree, passed, false, index + 1, valuetable)
if res == PEleftrecursion then
return res
elseif not res then
return nullable
else
return verifyrule(rulename, tree, passed, nullable, index + tree.p[index].ps, valuetable)
end
-- must check both children
elseif tag == TChoice then
nullable = verifyrule(rulename, tree, passed, nullable, index + 1, valuetable)
if nullable == PEleftrecursion then return nullable end
return verifyrule(rulename, tree, passed, nullable, index + tree.p[index].ps, valuetable)
elseif tag == TRule then
local rule = valuetable[tree.p[index].val]
passed[rule] = (passed[rule] or 0) + 1
return verifyrule(rulename, tree, passed, nullable, index + 1, valuetable)
elseif tag == TGrammar then
return lpcode.checkaux(tree, PEnullable, index) -- sub-grammar cannot be left recursive
else
assert(false)
end
end
local function verifygrammar(rule, index, valuetable)
-- check left-recursive rules
local LR = {}
local ind = index + 1
while rule.p[ind].tag == TRule do
local rulename = valuetable[rule.p[ind].val]
-- used rule
if rulename then
if verifyrule(rulename, rule, {}, false, ind + 1, valuetable) == PEleftrecursion then
if not LREnable then
error(("rule '%s' may be left recursive"):format(rulename), 0)
end
LR[rulename] = true
end
end
ind = ind + rule.p[ind].ps
end
assert(rule.p[ind].tag == TTrue)
for i = 0, rule.treesize - 1 do
if rule.p[i].tag == TRule and LR[valuetable[rule.p[i].val]] then
rule.p[i].cap = bor(rule.p[i].cap, RuleLR) --TRule can be left recursive
end
if rule.p[i].tag == TCall and LR[valuetable[rule.p[i].val]] then
if rule.p[i].cap == 0 then
rule.p[i].cap = 1 --TCall can be left recursive
end
end
end
-- check infinite loops inside rules
ind = index + 1
while rule.p[ind].tag == TRule do
-- used rule
if rule.p[ind].val then
if checkloops(rule, ind + 1) then
error(("empty loop in rule '%s'"):format(tostring(valuetable[rule.p[ind].val])), 0)
end
end
ind = ind + rule.p[ind].ps
end
assert(rule.p[ind].tag == TTrue)
end
-- Give a name for the initial rule if it is not referenced
local function initialrulename(grammar, val, valuetable)
grammar.p[1].cap = bit.bor(grammar.p[1].cap, Ruleused)
-- initial rule is not referenced?
if grammar.p[1].val == 0 then
local ind = #valuetable + 1
assert(ind <= 65536, "too many Lua values in pattern")
valuetable[ind] = val
grammar.p[1].val = ind
end
end
function newgrammar(pat)
-- traverse grammar. Create a new table (before all pairs key-pattern) to
-- collect all keys and their associated positions in the final tree
-- (the "position table").
-- Return new tree.
local n, size, rules, postab = collectrules(pat)
local grammar = treepattern(size)
local start = 0
grammar.p[start].tag = TGrammar
grammar.p[start].val = n
valuetable[grammar.id] = buildgrammar(grammar, rules, n, start + 1, valuetable)
finalfix(true, postab, grammar, start + 1, valuetable[grammar.id])
initialrulename(grammar, rules[1], valuetable[grammar.id])
verifygrammar(grammar, 0, valuetable[grammar.id])
return grammar
end
-- ======================================================
-- remove duplicity from value table
local function reducevaluetable(p)
local vtable = valuetable[p.id]
local value = {}
local newvaluetable = {}
local function check(v)
if v > 0 then
local ord = value[vtable[v]]
if not ord then
newvaluetable[#newvaluetable + 1] = vtable[v]
ord = #newvaluetable
value[vtable[v]] = ord
end
return ord
end
return 0
end
local function itertree(p, index)
local tag = p.p[index].tag
if tag == TSet or tag == TCall or tag == TOpenCall or
tag == TRule or tag == TCapture or tag == TRunTime then
p.p[index].val = check(p.p[index].val)
end
local ns = numsiblings[tag + 1]
if ns == 0 then
elseif ns == 1 then
return itertree(p, index + 1)
elseif ns == 2 then
itertree(p, index + 1)
return itertree(p, index + p.p[index].ps)
else
assert(false)
end
end
if p.treesize > 0 then
itertree(p, 0)
end
if p.code ~= nil then
for i = 0, p.code.size - 1 do
local code = p.code.p[i].code
if code == ICall or code == IJmp then
p.code.p[i].aux = check(p.code.p[i].aux)
elseif code == ISet or code == ITestSet or code == ISpan then
p.code.p[i].val = check(p.code.p[i].val)
elseif code == IOpenCapture or code == IFullCapture then
p.code.p[i].offset = check(p.code.p[i].offset)
end
end
end
valuetable[p.id] = newvaluetable
end
local function checkalt(tree)
local notchecked = {}
local notinalternativerules = {}
local function iter(tree, index, choice, rule)
local tag = tree[index].tag
if tag == TCapture and bit.band(tree[index].cap, 0xffff) == Cgroup then
if not choice then
if rule then
notchecked[rule] = index
end
else
tree[index].cap = bit.bor(tree[index].cap, BCapcandelete)
end
elseif tag == TChoice then
choice = true
elseif tag == TRule then
rule = tree[index].val
if bit.band(tree[index].cap, 0xffff) - 1 == 0 then
notinalternativerules[rule] = notinalternativerules[rule] or true
end
elseif tag == TCall then
local r = tree[index].val
if not choice then
notinalternativerules[r] = notinalternativerules[r] or true
end
end
local sibs = numsiblings[tree[index].tag + 1] or 0
if sibs >= 1 then
iter(tree, index + 1, choice, rule)
if sibs >= 2 then
return iter(tree, index + tree[index].ps, choice, rule)
end
end
end
iter(tree, 0)
for k, v in pairs(notchecked) do
if not notinalternativerules[k] then
tree[v].cap = bit.bor(tree[v].cap, BCapcandelete)
end
end
end
local function prepcompile(p, index)
finalfix(false, nil, p, index, valuetable[p.id])
checkalt(p.p)
lpcode.compile(p, index, valuetable[p.id])
reducevaluetable(p)
return p.code
end
local function lp_printtree(pat, c)
assert(pat.treesize > 0)
if c then
finalfix(false, nil, pat, 0, valuetable[pat.id])
end
lpprint.printtree(pat.p, 0, 0, valuetable[pat.id])
end
local function lp_printcode(pat)
-- not compiled yet?
if pat.code == nil then
prepcompile(pat, 0)
end
lpprint.printpatt(pat.code, valuetable[pat.id])
end
-- Main match function
local function lp_match(pat, s, init, ...)
local p = ffi.istype(treepattern, pat) and pat or getpatt(pat)
p.code = p.code ~= nil and p.code or prepcompile(p, 0)
return lpvm.match(p, s, init, valuetable[p.id], ...)
end
local function lp_streammatch(pat, init, ...)
local p = ffi.istype(treepattern, pat) and pat or getpatt(pat)
p.code = p.code ~= nil and p.code or prepcompile(p, 0)
return lpvm.streammatch(p, init, valuetable[p.id], ...)
end
-- Only for testing purpose
-- stream emulation (send all chars from string one char after char)
local function lp_emulatestreammatch(pat, s, init, ...)
local p = ffi.istype(treepattern, pat) and pat or getpatt(pat)
p.code = p.code ~= nil and p.code or prepcompile(p, 0)
return lpvm.emulatestreammatch(p, s, init, valuetable[p.id], ...)
end
-- {======================================================
-- Library creation and functions not related to matching
-- =======================================================
local function lp_setmax(val)
lpvm.setmax(val)
end
local function lp_setmaxbehind(val)
lpvm.setmaxbehind(val)
end
local function lp_enableleftrecursion(val)
LREnable = val
end
local function lp_version()
return VERSION
end
local function lp_type(pat)
if ffi.istype(treepattern, pat) then
return "pattern"
end
end
local function createcat(tab, catname, catfce)
local t, set = newcharset()
for i = 0, 255 do
if catfce(i) ~= 0 then
set[rshift(i, 5)] = bor(set[rshift(i, 5)], lshift(1, band(i, 31)))
end
end
tab[catname] = t
end
local function lp_locale(tab)
tab = tab or {}
createcat(tab, "alnum", function(c) return ffi.C.isalnum(c) end)
createcat(tab, "alpha", function(c) return ffi.C.isalpha(c) end)
createcat(tab, "cntrl", function(c) return ffi.C.iscntrl(c) end)
createcat(tab, "digit", function(c) return ffi.C.isdigit(c) end)
createcat(tab, "graph", function(c) return ffi.C.isgraph(c) end)
createcat(tab, "lower", function(c) return ffi.C.islower(c) end)
createcat(tab, "print", function(c) return ffi.C.isprint(c) end)
createcat(tab, "punct", function(c) return ffi.C.ispunct(c) end)
createcat(tab, "space", function(c) return ffi.C.isspace(c) end)
createcat(tab, "upper", function(c) return ffi.C.isupper(c) end)
createcat(tab, "xdigit", function(c) return ffi.C.isxdigit(c) end)
return tab
end
local function lp_new(ct, size)
local pat = ffi.new(ct, size)
pat.treesize = size
patternid = patternid + 1
pat.id = patternid
return pat
end
local function lp_gc(ct)
valuetable[ct.id] = nil
if ct.code ~= nil then
ffi.C.free(ct.code.p)
ffi.C.free(ct.code)
end
end
local function lp_eq(ct1, ct2)
return tostring(ct1) == tostring(ct2)
end
local function lp_load(str, fcetab)
local pat, t = lpvm.load(str, fcetab, true)
valuetable[pat.id] = t
return pat
end
local function lp_loadfile(fname, fcetab)
local pat, t = lpvm.loadfile(fname, fcetab, true)
valuetable[pat.id] = t
return pat
end
local function lp_dump(ct, tree)
local funccount = 0
-- not compiled yet?
if ct.code == nil then
prepcompile(ct, 0)
end
local out = {}
if tree then
out[#out + 1] = ffi.string(uint32(ct.treesize), 4)
out[#out + 1] = ffi.string(ct.p, ffi.sizeof(treepatternelement) * ct.treesize)
else
out[#out + 1] = ffi.string(uint32(0), 4)
end
out[#out + 1] = ffi.string(uint32(ct.code.size), 4)
out[#out + 1] = ffi.string(ct.code.p, ct.code.size * ffi.sizeof(patternelement))
local t = valuetable[ct.id]
local len = t and #t or 0
out[#out + 1] = ffi.string(uint32(len), 4)
if len > 0 then
for _, val in ipairs(t) do
local typ = type(val)
if typ == 'string' then
out[#out + 1] = 'str'
out[#out + 1] = ffi.string(uint32(#val), 4)
out[#out + 1] = val
elseif typ == 'number' then
local val = tostring(val)
out[#out + 1] = 'num'
out[#out + 1] = ffi.string(uint32(#val), 4)
out[#out + 1] = val
elseif typ == 'cdata' then
out[#out + 1] = 'cdt'
out[#out + 1] = ffi.string(val, ffi.sizeof(val))
elseif typ == 'function' then
out[#out + 1] = 'fnc'
funccount = funccount + 1
local name = funcnames[val] or ('FNAME%03d'):format(funccount)
out[#out + 1] = ffi.string(uint32(#name), 4)
out[#out + 1] = name
if not funcnames[val] and debug.getupvalue(val, 1) then
io.write(("Patterns function (%d) contains upvalue (%s) - use symbol name for function (%s).\n"):format(funccount, debug.getupvalue(val, 1), name), 0)
end
local data = string.dump(val, true)
out[#out + 1] = ffi.string(uint32(#data), 4)
out[#out + 1] = data
else
error(("Type '%s' NYI for dump"):format(typ), 0)
end
end
end
return table.concat(out)
end
local function lp_save(ct, fname, tree)
local file = assert(io.open(fname, 'wb'))
file:write(lp_dump(ct, tree))
file:close()
end
local pattreg = {
["ptree"] = lp_printtree,
["pcode"] = lp_printcode,
["match"] = lp_match,
["streammatch"] = lp_streammatch,
["emulatestreammatch"] = lp_emulatestreammatch,
["setmaxbehind"] = lp_setmaxbehind,
["B"] = lp_behind,
["V"] = lp_V,
["C"] = lp_simplecapture,
["Cc"] = lp_constcapture,
["Cmt"] = lp_matchtime,
["Cb"] = lp_backref,
["Carg"] = lp_argcapture,
["Cp"] = lp_poscapture,
["Cs"] = lp_substcapture,
["Ct"] = lp_tablecapture,
["Cf"] = lp_foldcapture,
["Cg"] = lp_groupcapture,
["P"] = lp_P,
["S"] = lp_set,
["R"] = lp_range,
["L"] = lp_and,
["locale"] = lp_locale,
["version"] = lp_version,
["setmaxstack"] = lp_setmax,
["type"] = lp_type,
["enableleftrecursion"] = lp_enableleftrecursion,
["enablememoization"] = lpvm.enablememoization,
["enabletracing"] = lpvm.enabletracing,
["save"] = lp_save,
["dump"] = lp_dump,
["load"] = lp_load,
["loadfile"] = lp_loadfile,
["__mul"] = lp_seq,
["__add"] = lp_choice,
["__pow"] = lp_star,
["__len"] = lp_and,
["__div"] = lp_divcapture,
["__unm"] = lp_not,
["__sub"] = lp_sub,
}
local metareg = {
["__gc"] = lp_gc,
["__new"] = lp_new,
["__mul"] = lp_seq,
["__add"] = lp_choice,
["__pow"] = lp_star,
["__len"] = lp_and,
["__div"] = lp_divcapture,
["__unm"] = lp_not,
["__sub"] = lp_sub,
["__eq"] = lp_eq,
["__index"] = pattreg
}
ffi.metatype(treepattern, metareg)
return pattreg