/** * Self-balancing binary search tree using the AVL implementation */ const BinarySearchTree = require('./bst') const customUtils = require('./customUtils') class AVLTree { /** * Constructor * We can't use a direct pointer to the root node (as in the simple binary search tree) * as the root will change during tree rotations * @param {Boolean} options.unique Whether to enforce a 'unique' constraint on the key or not * @param {Function} options.compareKeys Initialize this BST's compareKeys */ constructor (options) { this.tree = new _AVLTree(options) } checkIsAVLT () { this.tree.checkIsAVLT() } // Insert in the internal tree, update the pointer to the root if needed insert (key, value) { const newTree = this.tree.insert(key, value) // If newTree is undefined, that means its structure was not modified if (newTree) { this.tree = newTree } } // Delete a value delete (key, value) { const newTree = this.tree.delete(key, value) // If newTree is undefined, that means its structure was not modified if (newTree) { this.tree = newTree } } } class _AVLTree extends BinarySearchTree { /** * Constructor of the internal AVLTree * @param {Object} options Optional * @param {Boolean} options.unique Whether to enforce a 'unique' constraint on the key or not * @param {Key} options.key Initialize this BST's key with key * @param {Value} options.value Initialize this BST's data with [value] * @param {Function} options.compareKeys Initialize this BST's compareKeys */ constructor (options) { super() options = options || {} this.left = null this.right = null this.parent = options.parent !== undefined ? options.parent : null if (Object.prototype.hasOwnProperty.call(options, 'key')) this.key = options.key this.data = Object.prototype.hasOwnProperty.call(options, 'value') ? [options.value] : [] this.unique = options.unique || false this.compareKeys = options.compareKeys || customUtils.defaultCompareKeysFunction this.checkValueEquality = options.checkValueEquality || customUtils.defaultCheckValueEquality } /** * Check the recorded height is correct for every node * Throws if one height doesn't match */ checkHeightCorrect () { if (!Object.prototype.hasOwnProperty.call(this, 'key')) { return } // Empty tree if (this.left && this.left.height === undefined) { throw new Error('Undefined height for node ' + this.left.key) } if (this.right && this.right.height === undefined) { throw new Error('Undefined height for node ' + this.right.key) } if (this.height === undefined) { throw new Error('Undefined height for node ' + this.key) } const leftH = this.left ? this.left.height : 0 const rightH = this.right ? this.right.height : 0 if (this.height !== 1 + Math.max(leftH, rightH)) { throw new Error('Height constraint failed for node ' + this.key) } if (this.left) { this.left.checkHeightCorrect() } if (this.right) { this.right.checkHeightCorrect() } } /** * Return the balance factor */ balanceFactor () { const leftH = this.left ? this.left.height : 0 const rightH = this.right ? this.right.height : 0 return leftH - rightH } /** * Check that the balance factors are all between -1 and 1 */ checkBalanceFactors () { if (Math.abs(this.balanceFactor()) > 1) { throw new Error('Tree is unbalanced at node ' + this.key) } if (this.left) { this.left.checkBalanceFactors() } if (this.right) { this.right.checkBalanceFactors() } } /** * When checking if the BST conditions are met, also check that the heights are correct * and the tree is balanced */ checkIsAVLT () { super.checkIsBST() this.checkHeightCorrect() this.checkBalanceFactors() } /** * Perform a right rotation of the tree if possible * and return the root of the resulting tree * The resulting tree's nodes' heights are also updated */ rightRotation () { const q = this const p = this.left if (!p) return q // No change const b = p.right // Alter tree structure if (q.parent) { p.parent = q.parent if (q.parent.left === q) q.parent.left = p else q.parent.right = p } else { p.parent = null } p.right = q q.parent = p q.left = b if (b) { b.parent = q } // Update heights const ah = p.left ? p.left.height : 0 const bh = b ? b.height : 0 const ch = q.right ? q.right.height : 0 q.height = Math.max(bh, ch) + 1 p.height = Math.max(ah, q.height) + 1 return p } /** * Perform a left rotation of the tree if possible * and return the root of the resulting tree * The resulting tree's nodes' heights are also updated */ leftRotation () { const p = this const q = this.right if (!q) { return this } // No change const b = q.left // Alter tree structure if (p.parent) { q.parent = p.parent if (p.parent.left === p) p.parent.left = q else p.parent.right = q } else { q.parent = null } q.left = p p.parent = q p.right = b if (b) { b.parent = p } // Update heights const ah = p.left ? p.left.height : 0 const bh = b ? b.height : 0 const ch = q.right ? q.right.height : 0 p.height = Math.max(ah, bh) + 1 q.height = Math.max(ch, p.height) + 1 return q } /** * Modify the tree if its right subtree is too small compared to the left * Return the new root if any */ rightTooSmall () { if (this.balanceFactor() <= 1) return this // Right is not too small, don't change if (this.left.balanceFactor() < 0) this.left.leftRotation() return this.rightRotation() } /** * Modify the tree if its left subtree is too small compared to the right * Return the new root if any */ leftTooSmall () { if (this.balanceFactor() >= -1) { return this } // Left is not too small, don't change if (this.right.balanceFactor() > 0) this.right.rightRotation() return this.leftRotation() } /** * Rebalance the tree along the given path. The path is given reversed (as he was calculated * in the insert and delete functions). * Returns the new root of the tree * Of course, the first element of the path must be the root of the tree */ rebalanceAlongPath (path) { let newRoot = this let rotated let i if (!Object.prototype.hasOwnProperty.call(this, 'key')) { delete this.height return this } // Empty tree // Rebalance the tree and update all heights for (i = path.length - 1; i >= 0; i -= 1) { path[i].height = 1 + Math.max(path[i].left ? path[i].left.height : 0, path[i].right ? path[i].right.height : 0) if (path[i].balanceFactor() > 1) { rotated = path[i].rightTooSmall() if (i === 0) newRoot = rotated } if (path[i].balanceFactor() < -1) { rotated = path[i].leftTooSmall() if (i === 0) newRoot = rotated } } return newRoot } /** * Insert a key, value pair in the tree while maintaining the AVL tree height constraint * Return a pointer to the root node, which may have changed */ insert (key, value) { const insertPath = [] let currentNode = this // Empty tree, insert as root if (!Object.prototype.hasOwnProperty.call(this, 'key')) { this.key = key this.data.push(value) this.height = 1 return this } // Insert new leaf at the right place while (true) { // Same key: no change in the tree structure if (currentNode.compareKeys(currentNode.key, key) === 0) { if (currentNode.unique) { const err = new Error(`Can't insert key ${JSON.stringify(key)}, it violates the unique constraint`) err.key = key err.errorType = 'uniqueViolated' throw err } else currentNode.data.push(value) return this } insertPath.push(currentNode) if (currentNode.compareKeys(key, currentNode.key) < 0) { if (!currentNode.left) { insertPath.push(currentNode.createLeftChild({ key: key, value: value })) break } else currentNode = currentNode.left } else { if (!currentNode.right) { insertPath.push(currentNode.createRightChild({ key: key, value: value })) break } else currentNode = currentNode.right } } return this.rebalanceAlongPath(insertPath) } /** * Delete a key or just a value and return the new root of the tree * @param {Key} key * @param {Value} value Optional. If not set, the whole key is deleted. If set, only this value is deleted */ delete (key, value) { const newData = [] let replaceWith let currentNode = this const deletePath = [] if (!Object.prototype.hasOwnProperty.call(this, 'key')) return this // Empty tree // Either no match is found and the function will return from within the loop // Or a match is found and deletePath will contain the path from the root to the node to delete after the loop while (true) { if (currentNode.compareKeys(key, currentNode.key) === 0) { break } deletePath.push(currentNode) if (currentNode.compareKeys(key, currentNode.key) < 0) { if (currentNode.left) { currentNode = currentNode.left } else return this // Key not found, no modification } else { // currentNode.compareKeys(key, currentNode.key) is > 0 if (currentNode.right) { currentNode = currentNode.right } else return this // Key not found, no modification } } // Delete only a value (no tree modification) if (currentNode.data.length > 1 && value !== undefined) { currentNode.data.forEach(function (d) { if (!currentNode.checkValueEquality(d, value)) newData.push(d) }) currentNode.data = newData return this } // Delete a whole node // Leaf if (!currentNode.left && !currentNode.right) { if (currentNode === this) { // This leaf is also the root delete currentNode.key currentNode.data = [] delete currentNode.height return this } else { if (currentNode.parent.left === currentNode) currentNode.parent.left = null else currentNode.parent.right = null return this.rebalanceAlongPath(deletePath) } } // Node with only one child if (!currentNode.left || !currentNode.right) { replaceWith = currentNode.left ? currentNode.left : currentNode.right if (currentNode === this) { // This node is also the root replaceWith.parent = null return replaceWith // height of replaceWith is necessarily 1 because the tree was balanced before deletion } else { if (currentNode.parent.left === currentNode) { currentNode.parent.left = replaceWith replaceWith.parent = currentNode.parent } else { currentNode.parent.right = replaceWith replaceWith.parent = currentNode.parent } return this.rebalanceAlongPath(deletePath) } } // Node with two children // Use the in-order predecessor (no need to randomize since we actively rebalance) deletePath.push(currentNode) replaceWith = currentNode.left // Special case: the in-order predecessor is right below the node to delete if (!replaceWith.right) { currentNode.key = replaceWith.key currentNode.data = replaceWith.data currentNode.left = replaceWith.left if (replaceWith.left) { replaceWith.left.parent = currentNode } return this.rebalanceAlongPath(deletePath) } // After this loop, replaceWith is the right-most leaf in the left subtree // and deletePath the path from the root (inclusive) to replaceWith (exclusive) while (true) { if (replaceWith.right) { deletePath.push(replaceWith) replaceWith = replaceWith.right } else break } currentNode.key = replaceWith.key currentNode.data = replaceWith.data replaceWith.parent.right = replaceWith.left if (replaceWith.left) replaceWith.left.parent = replaceWith.parent return this.rebalanceAlongPath(deletePath) } } /** * Keep a pointer to the internal tree constructor for testing purposes */ AVLTree._AVLTree = _AVLTree; /** * Other functions we want to use on an AVLTree as if it were the internal _AVLTree */ ['getNumberOfKeys', 'search', 'betweenBounds', 'prettyPrint', 'executeOnEveryNode'].forEach(function (fn) { AVLTree.prototype[fn] = function () { return this.tree[fn].apply(this.tree, arguments) } }) // Interface module.exports = AVLTree